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1 Toric Geometry

1.1 Monoids

Definition 1.1.1. A commutative monoid is a triple (M,+, 0) with + : M2 →M and 0 ∈M such that

• + is associative,

• + is commutative,

• 0 is an identity element.

Example 1.1.2. The following are examples of monoids:

• (Z>0, ·, 1)

• (Z≥0,+, 0)

Lemma 1.1.3. Let R be a ring. Then the functor

AlgR →Mon : R 7→ (R, ·, 1)

has a left adjoint
R[−] : AlgR ←Mon : M 7→ R[M ]

Proof. We construct R[M ] as a ring:

As an additive group it is the linearization R[M ] with multiplication given by∑
i

ximi ·
∑
j

yini =
∑
i,j

xiyj(mi + yj)

which is well-defined by finite support of exact sequences.

Example 1.1.4. For a ring R, we have natural isomorphisms:

HomAlgR
(R[N], A) ∼= HomMon(N, (A, ·))

∼= A
∼= HomAlgR

(R[x], A).

Therefore, we conclude by the Yoneda lemma that R[N] ∼= R[x].

1.2 Rational polyhedral cones

Definition 1.2.1. LetM be a free finitely generated Abelian group with v1, . . . , vs ∈M . The cone generated
by the vi is {∑

i

rivi : ri ∈ R≥0

}
⊆M ⊗Z R =: MR.

We identify M with the inclusion
M ↪→MR : m 7→ m⊗ 1.

A subset σ ⊆ MR is a rational polyhedron (RP ) cone if ∃s ∈ N and v1, . . . , vs ∈ M such that σ is of this
form.

Proposition 1.2.2 (Gordon’s lemma). If σ ∈MR is an RP cone then σ∩M is a finitely generated monoid.

The generators of σ don’t necessarily generate σ ∩M !
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1.2.1 Duality and faces

Definition 1.2.3. For any monoid we can define

M∨ = Hom(M,Z)

and
M∨

R = Hom(MR,R)

Given a cone σ ⊆MR we define

σ∨ = {n ∈M∨
R : ∀m ∈ σ,m · n = n(m) ≥ 0}

Lemma 1.2.4. The dual cone σ∨ is an RP cone.

(σ∨)∨ = σ.

Definition 1.2.5. We write ⟨v1, . . . , vn⟩ ⊆MR to be the cone generated by the vi, concretely:

⟨v1, . . . , vn⟩ =

{∑
i

rivi : ∀i, ri ≥ 0

}
.

A face of σ is a cone of the form σ ∩ ⟨−τ⟩∨ for any τ ∈ σ∨.

Lemma 1.2.6. A face of an RP cone is an RP cone.

Remark 1.2.7. There is a nice trick for computing duals of cones. Let M = Zn and σ ⊆MR ∼= Rn a cone
generated by the elements v1, . . . , vn ∈M .

We have an isomorphism MR ∼= M∨
R given by v 7→ ⟨v,−⟩. Take any v ∈ M , there is then a line through

the origin perpendicular to v. The dual ⟨v⟩∨ corresponds to the half plane Hv corresponding to that line in
which v lies.

v

Figure 1: The dual of a cone ⟨v⟩.

For a general cone σ = ⟨v1, . . . , vn⟩ one can then compute the dual as the intersection of the half planes:

σ∨ =
⋂
i

Hvi .

The right to left inclusion is easy to see: if n ∈
⋂

i Hvi then for all (ri) ∈ Rn

n ·

(∑
i

rivi

)
=
∑
i

ri(n · vi)

≥ 0
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because n ∈ Hvi so n · vi ≥ 0.

Conversely, suppose n ∈ σ∨. Then n · vi ≥ 0 by assumption so n ∈ ⟨vi⟩∨ = Hvi for all i so n is also in the
intersection.

v1

v2

Figure 2: The dual of the cone ⟨v1, v2⟩ is the doubly shaded region.

Definition 1.2.8. An RP cone σ ⊆MR is strictly convex (SRP cone) if

σ ∩ −σ = 0

or equivalently σ does not contain a line through the origin.

1.2.2 Fans

Definition 1.2.9. A fan F in MR is a set of SRP cones in MR satisfying the following properties:

i. {0} ⊆ F ,

ii. for all σ ∈ F and faces τ of σ we have τ ∈ F ,

iii. for all σ, σ′ ∈ F we have that σ ∩ σ′ is a face of σ.

If σ is an SRP cone then the set {faces of σ} is a fan.

Example 1.2.10. Let M = Z2. Then the following is a fan:

F = {⟨(1, 0), (0, 1)⟩ , ⟨1, 0⟩ , ⟨0, 1⟩ , {0}} .

(0, 1)

(1, 0)

Figure 3: The fan F .
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Example 1.2.11. Let M = Z. Then

F = {σ2 = ⟨1⟩ , σ1 = ⟨−1⟩ , σ0 = {0}}

is a fan.

1.3 Toric schemes

We fix some ring R ∈ CRing.

Definition 1.3.1. Let σ be an SRP cone. The affine toric scheme associated to σ is given by

Xσ = Spec(R[σ∨ ∩M∨]).

We often write Sσ = σ∨ ∩M∨.

Remark 1.3.2. If σ′ ⊆ σ then σ∨ ⊆ (σ′)∨ inducing a map Sσ → Sσ′ and therefore also a map Xσ′ → Xσ.

Example 1.3.3. If M = Zm we can take

σ = Ra
≥0 = Ra

≥0 × {0}
n−1 ⊆MR = Rn.

Then
Xσ = Aa

R ×R Gn−a
m,R.

This is because σ∨ = Ra
≥0 × Rn−a so Sσ = Na × Zn−a. We know that R[N] ∼= R[x] and R[Z] ∼= R[x, x−1].

Exercise 1.3.4. The following are equivalent:

i. A cone σ is strictly convex,

ii. the linear span of σ∨ is M∨
R ,

iii. the map X{0} → SpecR[σ∨ ∩M∨] is an open immersion1.

Therefore, the affine schemes we get this way are those with a torus as a dense open subset.

Remark 1.3.5. The scheme SpecR[t, t−1] is often called the torus.

Lemma 1.3.6 (Gluing schemes). Let I be an index set, Xi a scheme for all i ∈ I, for all i, j an open
Uij ⊆ Xi such that Uii = Xi and φij : Uij

∼= Uji and for all i, j, k we have φ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik and

the diagram below commutes:

Uij ∩ Uik Uki ∩ Ukj

Uji ∩ Ujk

φik

φij φjk

Then there is a scheme X and opens Ui such that φi : Xi
∼= Ui and

i. X =
⋃

i Ui,

ii. φi(Uij) = Ui ∩ Uj,

iii. φij = φ−1
j |Ui∩Uj

◦ φi|Uij
.

1We write R[Sσ ] because we only defined Xs if σ is indeed strictly convex.
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Lemma 1.3.7. Let σ be an RP cone and (σ′) = σ ∩ ⟨ℓ⟩∨ a face. Then σ∨ ⊆ (σ′)∨ and the map

R[Sσ]→ R[Sσ′ ]

is the localization at the multiplicative subset.

T = ⟨ℓ⟩ ∩M∨.

Proof. We prove this is the localization using the universal property:

HomR(R[Sσ′ ], A) ∼= HomMon(Sσ′ , (A,×))
∼=
{
f ∈ Hom(Sσ, A) : f(ℓ) ∈ A×}

∼=
{
f ∈ HomR(R[Sσ, A]) : f(ℓ) ∈ A×}

∼= HomR(T
−1R[Sσ], A).

Lemma 1.3.8. Given a fan F we can define gluing data. We let the index set be F and define Xσ = Xσ for
all σ ∈ F . Given σ, σ′ ∈ F let τ = σ ∩ σ′ then define Uσσ′ = Xτ with isomorphism φσσ′ = Id : Xτ → Xτ .

Proof. We need to verify Xτ → Xσ is an open immersion and the triple overlap condition.

The overlap condition boils down to verifying the following: if τ, τ ′ are faces of σ then τ ∩ τ ′ is a face of σ
and Xτ∩τ ′ = Xτ∩τ′ ⊆ Xσ.

Let σ′ be a face of σ. We show that Xσ′ → Xσ is an open immersion. Let σ′ = ⟨−ℓ⟩∨ for some ℓ ∈ M∨.
Then (σ′)∨ = σ∨ + ⟨−ℓ⟩. The statement now follows from Lemma 1.3.7.

We leave the overlap condition to the reader.

Definition 1.3.9. Given a fan F we define XF to be the result of the gluing data of Lemma 1.3.8. This
can also be described as a colimit of affine schemes F → Sch: σ 7→ Xσ with the natural open immersions as
morphisms.

Remark 1.3.10. Suppose F is a fan given by the faces of a single cone σ. Then XF = Xσ.

Proof. In this case there is a natural inclusion τ ⊆ σ for all τ ∈ F . Therefore, Xσ is a terminal object in
the cocone of schemes given by F → Sch which is then also the colimit of the diagram by general abstract
nonsense.

Example 1.3.11. Consider the fan F from Example 1.2.11. Then the corresponding scheme is given by
P1
R.

We first compute Sσi
for i = 0, 1, 2.

For σ0 = {0} the dual cone is all of M∨
R . Therefore, Sσ0

= M∨
R ∩M∨ = M∨.

For σ1 =

Note that we have

Xσ0 = SpecR[Z] = SpecR[t, t−1],

Xσ1 = SpecR[Z≥0] = SpecR[t],

Xσ2
= SpecR[Z≤0] = SpecR[t−1].
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There is a pushout diagram of schemes:

SpecR[t, t−1] SpecR[t]

SpecR[t−1] P1
R

⌟

which gives that the gluing gives P1
R.

Lemma 1.3.12. Suppose we have a finite number of finitely generated groups (Mi)i≤n and SRP cones
σi ⊆ (Mi)R. Then the product

∏
i σi ⊆

∏
i Mi is corresponds to the product of schemes Xσ1

×Xσ2
.

Proof. We note that (∏
i

σi

)∨

=
∏
i

σ∨
i

so S∏
i σi

=
∏

i Sσi .

We also have ∏
i

Sσ =
⊕
i

Sσ

because we have finitely many Mi.

We show using Yoneda that R[
∏

i Sσi
] ∼=

⊗
i R[Sσi

]:

HomAlgR

(
R

[∏
i

Sσi

]
, A

)
= HomMon

(∏
i

Sσi
, (A,×)

)

= HomMon

(⊕
i

Sσi
, (A,×)

)
=
∏
i

HomMon(Sσi , (A,×))

=
∏
i

HomAlgR
(R [σi] , A)

= HomAlgR

(⊗
i

R[σi], A

)
.

This is because tensor products are coproducts in the category of commutative R-algebras. The right
adjoint functor Spec : CRingop → Sch preserves limits, so it sends the tensor product to the product of
schemes.

1.4 Toric morphisms

Now we define morphisms of toric schemes to turn the function from fans to schemes into a functor.

Definition 1.4.1. Let f : M →M ′ be a morphism of monoids, σ ⊆MR, σ
′ ⊆M ′

R and f∗ the pullback map
Hom(M ′∨

R ,R)→ Hom(M∨
R ,R). Then if f [σ] ⊆ σ′ we get a map of monoids Sσ′ → Sσ inducing a morphism

of rings R[Sσ′ ]→ R[Sσ] or equivalently a scheme morphism Xσ → Xσ′ .

Remark 1.4.2. The functor R[−] is not full so not every morphism between these rings is induced by
monoid morphisms. Consider a map Z[N] = R[x] → Z[N] = R[x] sending x 7→ x2. This is not induced by a
monoid map N→ N.
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Definition 1.4.3. Let F, F ′ be fans on M,M ′ respectively and f : M → M ′ be a monoid morphism such
that for each σ ∈ F there is a σ′ ∈ F ′ such that f [σ] ⊆ σ′. Then f is called compatible with F and F ′.

Theorem 1.4.4. Let f : M → M ′ be a morphism compatible with the fans F, F ′. Then it induces a
morphism XF → XF ′ . Such a map is called a toric morphism.

Proof. First we note that for any σ there is a smallest σ′ which contains it. To see this note that F op is
directed: if τ, τ ′ ∈ F ′ then τ ∩ τ ′ ∈ F ′. Now because F is finite this process terminates eventually. We write
σ′ for the smallest cone in F ′ containing σ ∈ F .

Given any σ ∈ F we know there is a map Xσ → Xσ′ → XF ′ . If we show that this collection of maps forms a
cocone then it induces a map XF → XF ′ by the universal property. To prove this, by functoriality it suffices
to show that the diagram

Sτ Sτ ′

Sσ Sσ′

is a commutative diagram of monoids for any σ ⊆ τ ∈ F . This is immediate because the vertical maps are
inclusions and the horizontal map is the restriction of the pullback f∗ on the ambient space.

Proposition 1.4.5. The map F 7→ XF extends to a functor from fans to schemes.

Proof. We define the functor on morphisms of fans using the morphisms defined in Theorem 1.4.4.

This functor preserves the identity because for any fan map F → F the induced map Sσ → Sσ is the identity
for all σ ∈ F because pullbacks preserve identity.

Similarly, this is multiplicative because the pullback preserves composition so the pullback given by a com-
position F → F ′ → F ′′ is the composition of the individual pullbacks.

Example 1.4.6. Let π : Zn → Z be the projection onto the first coordinate and F a fan with support
contained in R≥0 × Rn−1. Let F ′ be the fan F ′ =

{
{0} ,R≥0

}
. Then π is compatible with the fans. We

therefore get a map
XF → XF ′ ∼= SpecR[x] = A1

R.

In particular if we take F from Example 1.2.10 then we get a morphism of rings

R[x]→ R[x, y] : x 7→ R[x, y]

which corresponds to the natural projection A2
R ↠ A1

R.

Example 1.4.7. Let M = Zn and F a collection of cones. Then f(x) = mx is compatible with F for fixed
m ∈ N. Any cone σ ∈ F is closed under scaling with a non-negative number so f [σ] ⊆ σ ∈ F . This gives an
endomorphism XF → XF .

1.5 The torus action

Definition 1.5.1. Let M be a finitely generated Abelian group of rank n and F a fan on M . Writing
T = SpecR[M∨] for the torus there is a map

XF ×R T → XF

locally given for each σ ∈ F by a map R[Sσ]→ R[Sσ]⊗R T sending x 7→ x⊗ x where we embed R[Sσ] ⊆ T
by the natural inclusion Sσ →M∨.
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Proof. We show that this map exists. Notice that (Xσ ×R T )σ∈F is an open cover of the fibre product.
Therefore, if the maps are compatible on this affine cover it defines a scheme morphism.

Let τ ⊆ σ be cones in F . To show compatibility of the cone map means showing commutativity of the
following diagram:

R[Sσ] R[Sσ]⊗ T

R[Sτ ] R[Sτ ]⊗ T

This is trivial because the map into the tensor product is a natural transformation between functors and the
vertical maps are both the natural localization map.

Theorem 1.5.2. Let M →M ′ be a map of monoids such that F, F ′ are compatible with it. Then the torus
action is compatible with the induced XF → XF ′ . Concretely the diagram

XF × TM XF ′ × TM ′

XF XF ′

commutes.

Proof. It is sufficient the diagram commutes locally. Concretely we must have that the following commutes:

R[Sσ] R[Sσ′ ]

R[Sσ]⊗R[M ] R[Sσ′ ]⊗R[M ′]

This is clearly true.

Remark 1.5.3. Given a toric scheme XF over R. The toric action gives an action XF (R)×T (R)→ XF (R)
of the torus rational points on the rational points of XF which is compatible with toric morphisms.

1.6 Flat morphisms

Definition 1.6.1. Let A,B be two commutative rings and f : A → B a ring morphism. Then f is called
flat if B is a flat A-module by this map.

Example 1.6.2. The localization map R → S−1R is flat for any ring R and multiplicatively closed subset
S ⊆ R.

1.7 Proper morphisms

Definition 1.7.1. We quickly define a couple properties of morphisms. Let f : X → Y be a morphism of
schemes

i. f is called separated if the diagonal map X → X ×Y X is a closed immersion,

ii. f is called of finite type if for all affine opens V ⊆ Y the inverse image f−1(V ) is quasi-compact and
for all affines U ⊆ f−1(V ) the map OY (V )→ OX(U) turns OX(U) into a finitely generated OY (V ),
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iii. f is called universally closed when any pullback along Z → Y has that X ×Y Z → X is a closed
embedding of topological spaces,

X ×Y Z Z

X Y

⌟

iv. A morphism is proper if it has all three of the above properties.

Example 1.7.2. Most “natural” morphisms of schemes are separated and of finite type. However, not all
nice maps are universally closed. The standard example is the map A1 → Z. Pulling back along A1 → Z
gives the projection map A2 → A1 which is not closed because the closed Z(xy − 1) ⊆ A2 is mapped onto
the open D(x) ⊆ A1.

Definition 1.7.3. We write |F | =
⋃

σ∈F σ ⊆MR and call it the support of a fan.

We are going to work towards the following theorem:

Theorem 1.7.4. Let M,M ′ be finitely generated Abelian groups, F, F ′ fans in the respective lattices and
f : M → M ′ a morphism compatible with the fans. Then the induced f : XF → XF ′ of toric schemes is
proper if and only if f−1[|F ′|] = F .

Example 1.7.5. Consider the fan from Example 1.2.10 and the following fan

(0, 1)

(1, 0)

(1, 1)

Figure 4: A “refinement” F ′.

The identity on Z2 is compatible with F ′ → F . The only points of MR mapped into |F | are those already in
|F ′|. Therefore, this defines a proper map of toric schemes (later we will see this corresponds to a blow-up).

Example 1.7.6. A non-example we have already seen is sending the fan {⟨1⟩} ⊆ R to the zero fan in 0. It
corresponds to the structure map A1

R → R which is not proper because −1 ∈ π−1[0].

Definition 1.7.7. Let K be a field. A discrete valuation is a map v : K → Z ∪ {∞} with the following
properties:

i. v(x) =∞ if and only if x = 0,

ii. v(xy) = v(x) + v(y),

iii. v(x+ y) ≥ min(v(x), v(y)).

We call the ring R = {x ∈ K : v(x) ≥ 0} the discrete valuation ring (DVR) with valuation v : R→ N∪{∞}.

Example 1.7.8. Let k be a field. Then the ring k[x](x) is a discrete valuation ring with valuation

v(f) = max
{
i ∈ N : xi | f

}
.

It has fraction field k(x) the fraction field of k[x].
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Theorem 1.7.9 (Valuative criterion of properness). Let X → Y be a quasi-separated morphism of finite
type2 of Noetherian schemes3 Then it is proper if and only if for all discrete valuation rings R the following
commutative square has a unique lift:

SpecK X

SpecR Y

∃!

Now we can start the proof of Theorem 1.7.4. We will prove both implications in separate lemmas.

Lemma 1.7.10. Let M,M ′ be finitely generated Abelian groups, F, F ′ fans in the respective lattices and
f : M →M ′ a morphism compatible with the fans. If the induced f : XF → XF ′ of toric schemes over R is
proper then f−1[|F ′|] = F .

Proof. Suppose XF → XF ′ is proper, but there is a w ∈M \ |F | that has f(w) ∈ |F ′|. We want to arrive at
a contradiction: find some square such that Theorem 1.7.9 has no lift. To do this we fix some σ′ ∈ F ′ with
f(w) ∈ σ′.

We want to find some field k and a map R→ k. This is purely to construct a DVR for the valuative criterion,
the choice does not matter. We fix a maximal ideal m ◁ R and set k = R/m.

We construct a commutative square by giving maps Spec k(x)→ XF and Spec k[x](x) → XF ′ :

λw : Spec k(x)→ SpecR[M∨] ⊆ XF

k(x)← R[M∨]

xu(w) ← [ u ∈M∨,

λf(w) : Spec k[x](x) → SpecXσ ⊆ XF ′

k[x](x) ← R[σ∨ ∩M∨]

xu(f(w)) ← [ u ∈ σ∨ ∩M∨.

This gives a commutative square with lift by assumption of properness. We track in which affine open Xσ

the point (x) ◁Q[x](x) lands, and obtain a commutative diagram

Spec k(x) Xσ

Spec k[x](x) XF ′

λw

λf(w)

∃!

Note that w /∈ σ. This means that there is some u ∈ σ∨ ∩M∨ with u(w) < 0. We obtain a commutative
triangle of rings

k(x) R[σ∨ ∩M∨]

k[x](x)

but u is mapped to xu(w) ∈ k(x) which has v(xu(w)) = u(w) < 0 so u cannot be sent into k[x](x). This is a
contradiction so no such w can exist, proving the lemma.

Now we prove the opposite implication, first over Z and extend our results using results about base changes
of proper maps. We do this to work with Noetherian schemes for which the weakened valuative criterion is
sufficient.

2All toric morphisms are separated and of finite type, so these restrictions are not relevant to us.
3There is a more general version of this for non-Noetherian schemes with all valuation rings. We need DVR’s because we

can construct maps to Z from them which live in dual spaces.
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Lemma 1.7.11. Let M,M ′ be finitely generated Abelian groups, F, F ′ fans in the respective lattices and
f : M →M ′ a morphism compatible with the fans. If f−1[|F ′|] = F then the induced f : XF → XF ′ of toric
schemes over Z is proper.

Proof. We show that the induced map XF → XF ′ is proper using the valuative criterion of Noetherian
schemes. Toric schemes over Z are Noetherian because affine toric schemes correspond to finitely generated
Z-algebras and therefore any toric scheme over Z can be covered by finitely many affine Noetherian schemes.

Let (R, v) be a DVR with fraction field K such that we have a commutative square. We want to find a lift
and show its uniqueness.

SpecK XF

SpecR XF ′

f

We can assume that the top map SpecK → XF factors through the torus because XF is irreducible45.

Consider any σ′ ∈ F ′ be such that SpecR → XF factors through Xσ′ . Then we get a commutative square
of rings

K Z[M∨]

R Z[σ′∨ ∩M ′∨]

α

f∗

Because M∨ is a group, the map M∨ → K takes values in the units of K. This means that we obtain a map
v ◦ α ◦ f∗ : σ′∨ ∩M ′∨ → Z, it factors through R where all elements have non-negative valuation: we have a
map v ◦ α ◦ f∗ : σ′∨ ∩M ′∨ → N. This corresponds to some point in σ′ ∩M ′ which we will denote v ◦ α ◦ f∗.
It is in the image of f : it is given by f(v ◦α). By the assumption on f this means that there is a cone σ ∈ F
with v ◦ α ∈ σ. Now we fix a particular cone σ′ ∈ F ′ such that f [σ] ⊆ σ′ to obtain a commutative diagram

K Z[M∨] Z[σ∨ ∩M∨]

R Z[σ′∨ ∩M ′∨]

α

f∗

Because v ◦ α is a point in σ the map v ◦ α : σ∨ ∩M∨ → Z takes values in N and therefore gifts a lift of the
diagram. This shows the existence part of the valuative criterion.

Now we show uniqueness. If we show that XF → XF ′ is separated, we get the uniqueness of such lifts for
free by the valuative criterion of separatedness. Any toric scheme over Z is separated6. We now make use
of the following properties of separated morphisms: if X → Y → Z is separated then X → Y is separated.
This gives immediately that the map is separated and thus uniqueness of the lift.

We conclude that XF → XF ′ satisfies the valuative criterion for properness and is therefore proper.

Now we can prove the remaining implication Theorem 1.7.4 for arbitrary rings using base change.

Corollary 1.7.12. Let M,M ′ be finitely generated Abelian groups, F, F ′ fans in the respective lattices and
f : M →M ′ a morphism compatible with the fans. If f−1[|F ′|] = F then the induced f : XF → XF ′ of toric
schemes over any ring R is proper.

4The toric scheme XF is irreducible because Z[M∨] is a dense irreducible open.
5This is not an easy thing to see, and the proof involves some complicated scheme theory. We refer to https://mathoverflow.

net/questions/68648/valuation-criterion-of-properness-irreducible-varieties.
6This is true for a toric scheme over any ring. We will not show this but refer to any standard text e.g. Theorem 3.1.5 of

Toric Varieties by Cox, Little, and Schenck.
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Proof. Let R be any ring. We will write XF for the toric scheme over Z and XR
F for the scheme over R.

Suppose we satisfy all hypotheses, then XF → XF ′ is a proper map. We show that XR
F → XR

F ′ is a proper
map by exhibiting it as a base change. Proper maps are preserved by base change, so the resulting map is
also proper.

We can give XR
F is given by a pullback diagram

XR
F R

XF Z

⌟

Now we can construct the morphism we are interested in as a pullback:

XR
F XR

F ′ R

XF XF ′ Z

⌟ ⌟

This concludes the proof.

1.8 Blow-ups of toric varieties

1.8.1 Defining blow-ups

Definition 1.8.1. An irreducible divisor D in a scheme X is an irreducible closed subscheme of codimension
1 which is locally

Definition 1.8.2. Let X be a scheme and I a coherent sheaf. The blow-up X̃ is a scheme with π : X̃ → X
a morphism such that π−1I is invertible and X̃ is terminal in the full subcategory of the slice category of
morphisms with this property.

It is concretely computed by projectivizing a graded algebra: Proj
⊕

n In.

Remark 1.8.3. Given a closed immersion ı : Z → X we can blow up along ı∗OZ to obtain a blow-up
X̃ → X called the blow-up in Z.

1.8.2 Blowing up toric varieties

Definition 1.8.4 (Refinement). Let M be a torsion free, finitely generated, Abelian group and F, F ′ two
fans. We say F ′ refines F if

i. Each σ′ ∈ F ′ is contained in a σ ∈ F ,

ii. the fans have the same support: |F | = |F ′|.

Refinements give proper morphisms of toric schemes XF ′ → XF .

Definition 1.8.5 (Star subdivision). Let F be a fan of M and σ = ⟨u1, . . . , un⟩ ∈ F a smooth cone such that
u1, . . . , un is a basis of M . Let u0 =

∑
i≥1 ui and F ′(σ) the set of cones generated by subsets of {u0, . . . , un}

not containing by {u1, . . . , un}. Then

F ∗(σ) = F \ {σ} ∪ F
′
(σ)

is called the star subdivision of F .
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1.9 Divisors

We will only be considering Noetherian, integral, normal schemes.

Definition 1.9.1 (Prime divisor). Let X be a scheme. A prime divisor D ⊆ X is a closed, irreducible
subscheme of codimension 1. We write divX for the free Abelian group generated by the prime divisors.

Definition 1.9.2. Let D ⊆ X be a prime divisor. We will write OX,D for the stalk OX,ζ of the generic
point η ∈ D. It is a discrete valuation ring OX,D ⊆ K(X) with valuation νD.

Definition 1.9.3. We have a map K(X)×
div−−→ divX given by

f 7→
∑
D

νD(f)D.

We define div0 = imdiv to be the principal divisors and take the quotient group ClX = divX/ div0 X.

Definition 1.9.4 (Cartier divisor). Let U ⊆ X be an open. Then we have a restriction divX → divU
defined by D 7→ D ∩ U (extended by 0 if D ∩ U = ∅).

We then define

cdivX = {D ∈ divX : There exists an open cover {Ui}i and fi ∈ K(X) with D|U = div fi|Ui
}

called the Cartier divisors.

We get an exact sequence
0→ div0 X → cdivX → PicX.

Proposition 1.9.5. The following are true:

i. If X is smooth then PicX ∼= ClX,

ii. ClUFD = 0,

iii. There is an exact sequence
0→ ZD → divX → divX \D → 0.

Corollary 1.9.6. The Picard group of projective space is Z and generated by the hyperplane.

Proof. Apply excision to the hyperplane by taking quotients by principal divisors which is fine.

Definition 1.9.7. Given a toric scheme XF on a lattice M we define the characters to be the morphisms
of group schemes

HomGrpSch(T,G1).

This turns out to be equivalent to a map M∨ → Z: we have an isomorphism of groups

M → HomGrpSch(T,G1)

m 7→ χm

Definition 1.9.8. We write F (1) for the set of rays in F .

Theorem 1.9.9. There is a map F (1)→ divX defined on the standard opens Xσ by

ρ 7→ V (
{
χm : m ∈ ρ⊥ ∩ Sσ

}
) ⊆ Xσ

giving a decomposition

XF \ T =
⋃
ρ

Dρ.
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Example 1.9.10. Given the affine space A2 given as a toric scheme by σ = N2 ⊆ Z2 the rays are the two
axes.

The complement A2 \G2 is exactly given by the two axes of A2 which is the union of the desired divisors.

Remark 1.9.11. We can see χm : T → G1 defines a function χm ∈ K(X)× which makes divχm well-defined.

Proposition 1.9.12. There is an equality

divχm =
∑
ρ

⟨uρ,m⟩Dρ

where uρ is the minimal generator of ρ.

Proof. The function χm cannot have poles or roots on T because it maps into G.

We apply excision to get an exact

0→
⊕
ρ

ZDρ → divXF → div T → 0

by excision. Because χm is zero on T this means that it is a sum of elements in
⊕

ρ ZDρ.

By coordinate transformation we can assume uρ = e1 ∈M . We identify the character with a monomial

χm ≃ x⟨m,uρ1⟩ · · ·x⟨m,uρn ⟩

from which we get the desired statement.

Theorem 1.9.13. There is an exact sequence

M
m 7→divχm

−−−−−−−→
⊕

ZDρ → ClXF → 0.

1.10 Chow groups and intersection theory

Example 1.10.1. Let X be a real differential manifold of dimension n and an integer k ≥ 0. Then we have
cohomology groups Hk(X;Z) and a cup product

Hn−k(X;Z)×Hn−l(X;Z)→ Hn−k−l(X;Z)

corresponding to taking the “intersection” of submanifolds.

We try to generalize this to schemes where we will get an isomorphism

Ak(X) ∼= H2k(X;Z)

where on the right-hand side we give X/C the analytic topology.

Definition 1.10.2 (Chow group). Take X a scheme of finite type and k ≥ 0. We define

Zk(X) =

{∑
i

ui[vi] : ui ∈ Z, vi is a closed subvariety of dimension k

}
.

For every k + 1-dimensional subvariety ω of X, f ∈ κ(ω) we define

divω f =
∑
V

orderV (φ)[V ] ∈ Zk(X).
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We define Bk(X) ⊆ Zk(X) to be the subgroup generated by all cycles of the form divω f . The Chow group
is then defined as

Ak(X) = Zk(X)/Bk(X).

We also define

Z∗(X) =
⊕
k

Zk(X),

A∗(X) =
⊕
k

Ak(X).

Definition 1.10.3. Let ı : Y ↪→ X be a closed subscheme. Then we define

ı∗:Ak(Y )→ Ak(X)

[Z] 7→ [Z].

Lemma 1.10.4. Given Y ⊆ X a closed subscheme and U = Y \X we get an exact sequence

Ak(Y )→ Ak(X)→ Ak(Y )→ 0.

Proposition 1.10.5. The Chow groups of An are given by

Ak(An) =

{
Z k = n,

0 otherwise.

Similarly, for projective space we have
Ak(Pn) ∼= Z

for 0 ≤ k ≤ n.

Remark 1.10.6. We have an intersection pairing on Pn

An−k(Pn)×An−l(Pn)→ An−k−l(Pn)

(a, b) ∈ Z2 7→ ab ∈ Z.

If codim(X ∩ Y ) = codimX + codimY then [X ∩ Y ] = [X] · [Y ]. We might have to choose representatives
such that they intersect transversally for this to be well-defined.

Definition 1.10.7. Let f : X → Y be a proper morphism and Z ⊆ X a subvariety. Then f(Z) ⊆ Y is a
subvariety of dimension at most dimZ giving a pushforward

f∗([Z]) =

{
([κ(Z) : κ(f(Z))]) · [f(Z)] dim f(Z) = dimZ
0 else.

1.10.1 Chow groups on toric varieties

Remark 1.10.8. On a toric variety we always have that

An−1 = div(X)/κ(X)× = ClX

Theorem 1.10.9. Let X be a toric variety of a fan F . Then Ak(X) is generated by the orbit closures v(σ)
of the cones σ of dimension n− k of F .
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Proof. We define Xi =
⋃

σ,dimσ≥n−i v(σ) giving inclusions Xi ⊇ Xi−1. Then Xi \Xi−1 is exactly the orbits
of cones of dimension n− i written as

⋃
σ,dimσ=n−1 Oσ.

This gives an exact sequence

Ak(Xi−1)→ Ak(Xi)→
⊕

dimσ=n−i

Ak(Oσ)→ 0.

Now the Oσ are the tori TN/Nσ
which are opens in Ai. Therefore, excision gives

Ak(T ) =

{
Z k = i

0 else.

We have an exact sequence

Ak(Xi−1)→ Ak(Xi)→
⊕

dimσ=n−i

Z[Oσ]→ 0.

By induction, we may assume that

Ak(Xi) =

{
0 k > i⊕

dimσ=n−i Z[Oσ] else,

for k ≤ i.

1.11 Blowing up in a monomial ideal

All toric varieties that occur in this talk are over some field k.

1.11.1 Blowing up a ring

We first inspect what blow-ups of affine schemes look like. We do this by first considering ideals that are
already invertible.

Lemma 1.11.1. Let R be a ring, f ∈ R regular and I = (f) generated7 by r1, . . . , rn. Then there are
f1, . . . , fn such that ri generates Ifi ◁ Rfi and (f1, . . . , fn) = R.

Proof. Let f ∈ R be a generator of I. Then for each i there is an fi ∈ R such that ri = fif . We claim these
have the desired property. Clearly (f) = (ri) in Rfi because f−1

i ri = f in Rfi . Therefore, all we need to do
is show that (f1, . . . , fn) = R.

Now suppose that (f1, . . . , fn) ̸= R, then there is a maximal ideal m ◁ R such that (f1, . . . , fn)m → Rm is
not surjective. This means that f1, . . . , fn ∈ m, else one of them would have been a unit which generates
Rm. Therefore, we must have that

(f) = (r1, . . . , rn) ⊆ (f1, . . . , fn)(f) ⊆ m(f) ⊆ (f)

giving m(f) = (f) in the local ring Rm. Nakayama’s lemma then gives (f) = 0. Because f was regular this
gives a contradiction.

This shows that for a set of generators r1, . . . , rn of a nice enough invertible ideal, we can find an affine open
cover such that one of these elements generates the ideal on each open. We emulate this property to get a
definition of the blow-up of an affine scheme:

7This is obviously not the smallest set of generators.
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Definition 1.11.2 (Blow-up). Let R be a ring and I = (r1, . . . , rn) ◁ R an ideal. We can construct the
blow-up of SpecR in I to be the scheme constructed in the following manner:

For each ri construct the ring

Ri =
R[xj ]j ̸=i

(rj − xrj)
= R

[
rj
ri

]
.

Then clearly (r1, . . . , rn) = (ri) in Ri. These rings will cover the blow-up. We glue Ri and Rj along the
localization

Rij = R

[
rj
ri
,
ri
rj

]
= (Ri)xj

= (Rj)xi
.

This defines a scheme which is the blow-up BlI R in the ideal I. We also get the blow-up map BlI R→ SpecR
from the natural inclusion maps R→ Ri.

The toric varieties we consider are normal, but blow-ups are not. Therefore, we will consider the normalized
blow-up.

1.11.2 Normalization

Definition 1.11.3 (Integral elements and integral closure). Let R be an integral domain with fraction field
K. We call an element a ∈ K integral over R if there exists some monic polynomial f ∈ R[x] such that
f(a) = 0.

A domain is integrally closed if it contains all elements which are integral over it.

Lemma 1.11.4. The integral closure has a few nice properties. We will give a few

i. Given any domain, there is a smallest integrally closed ring containing it:⋂
R ⊆ A ⊆ K integrally closed

A.

It is called the integral closure.

ii. Given integrally closed rings (Ri)i with fraction field K, the intersection
⋂

i Ri is also integrally closed.

iii. For any domain R the following are equivalent:

(a) R is integrally closed,

(b) Rp is integrally closed for all prime ideals p ◁ R,

(c) Rm is integrally closed for all maximal ideals m ◁ R.

iv. Localizations of integrally closed rings are integrally closed.

v. Let R ⊆ R′ be two domains such that Q(R) = Q(R′) = K and R′ is integrally closed. If the integral
closure of R contains R′ then it is R′.

Definition 1.11.5. A scheme X is normal if all of its stalks OX,x are integrally closed domains.

Theorem 1.11.6. Given a scheme X there is a scheme normal scheme Xν and morphism Xν → X such
that locally this morphism is given by inclusion into the integral closure.

Theorem 1.11.7. Toric varieties over a field are normal.

Proof. We show that any toric varieties has a cover of integral domains.

First we prove that the toric variety of a ray is normal. Let ρ be a ray in M ⊗R. Without loss of generality
we may assume that it is the positive part of the first axis. Then Xρ = k[x1, x

±1
2 , . . . , x±1

n ] which is the
localization of an integrally closed domain and hence integrally closed.
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Now any cone σ is generated by its rays ρ1, . . . , ρm. This means that σ∨ =
⋂

i ρ
∨
i , so also k[Sσ] =

⋂
i k[Sρi ]

which is the intersection of integrally closed domains and therefore integrally closed. This gives that the
standard affine opens are normal.

1.11.3 Computing blow-ups of toric varieties

Now we are ready for describing the process of computing normalized blow-ups of affine toric varieties in
monomial ideals. We will only give the process for blowing up a monomial ideal of A2

k generated by two
monomials.

Let (Xa1Y b1 , Xa2Y b2) be a monomial ideal of k[x, y]. We can identify this ideal with points of Z2 as in
Figure 5. We also pick the monomials to the right and above the points because these are also in the
ideal.

(0, 1)

(1, 0)

Figure 5: Drawing the ideal.

Next we take the convex hull of this shape

(0, 1)

(1, 0)

Figure 6: Drawing the convex hull of the ideal.

We translate all corners to the origin and look at the cones they generate.

19



•(0, 0)

•(a2 − a1, b2 − a1)

(a) The first translation σ∨.

•(a1 − a2, b1 − b2)

•(0, 0)

(b) The second translation σ′∨.

Figure 7: Shifting both corners of the convex hull to the origin.

Taking the dual cones of these we get a fan, which is the normalized blow-up:

σ

σ′

Figure 8: The fan of the normalized blow-up.

Lemma 1.11.8. Let σ ⊆M be a cone with rays ρ1, . . . , ρn and x1, . . . , xn points on ρ1, . . . , ρn respectively.

Then writing ⟨(xi)i⟩N for the monoid generated by these points, the ring k[σ ∩M ] is integral over k[⟨(xi)⟩N].

Proof. Take any point z ∈ σ ∩M . We show it is integral over A. Because it is in the cone it is a Q≥0-linear
combination of the xi:

z =
∑
i

pi
qi
xi.

Therefore,
∑

i pi
∏

j ̸=i qixi ∈ ⟨(xi)i⟩N. This element is a scalar multiple of z: dividing by
∏

i qi gives z.

This shows that z is a root of the monic polynomial

t
∏

i qi −
∏
i

x
pi

∑
j ̸=i qj

i

and therefore integral.

Remark 1.11.9. Note that if k[σ∩M ] and k[⟨(xi)N⟩] do not necessarily have the same fraction field, so the
former is not necessarily the integral closure of the latter.

Take for example the ring inclusion k[x2] ⊆ k[x]. Both are integrally closed but k[x] is integral over k[x2].

Theorem 1.11.10. The fan in Figure 8 is the normalized blow-up of A2 in the ideal (Xa1Y b1 , Xa2Y b2).
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Proof. We show that the standard affine opens of this toric variety are isomorphic to those of the normal-
ization of Definition 1.11.2 and that we glue along the same open.

The affine opens of the blow-up are the spectra of the affine rings

k

[
X,Y,

Xa1Y b1

Xa2Y b2

]
= k[X,Y,Xa1−a2Y b1−b2 ],

k

[
X,Y,

Xa2Y b2

Xa1Y b1

]
= k[X,Y,Xa2−a1Y b2−b1 ].

We claim that normalizing gives us exactly the desired rings corresponding to the cones, glued along the
same opens.

We prove the statement for the cone σ. The other argument will work exactly the same. The ring
k[X,Y,Xa1−a2Y b1−b2 ] is given by the monoid ring of the monoid drawn in Figure 9.

•(0, 0)

•(a2 − a1, b2 − a1)

•2(a2 − a1, b2 − a1)

•3(a2 − a1, b2 − a1)

•4(a2 − a1, b2 − a1)

Figure 9: The monoid corresponding to the affine of the blow-up.

We claim that the normalization of this ring is exactly the desired cone: We need to show that all points of
the cone correspond to monomials that are integral over this ring and that they have the same fraction field.

The first part is immediate from Lemma 1.11.8. At least one point of each ray is in the cone. Therefore, the
ring k[Sσ] is integral over the above ring.

To see the fraction fields are the same we simply note that both have fraction field k(X,Y ).
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