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1 Toric Geometry

1.1 Monoids
Definition 1.1.1. A commutative monoid is a triple (M, +,0) with + : M? — M and 0 € M such that
e -+ is associative,
e + is commutative,
e 0 is an identity element.
Example 1.1.2. The following are examples of monoids:
® (Z>0,,1)
e (Z>p,+,0)
Lemma 1.1.3. Let R be a ring. Then the functor
Algp - Mon: R+~ (R,-,1)

has a left adjoint
R[] : Algp < Mon : M — R[M]
Proof. We construct R[M] as a ring:
As an additive group it is the linearization R[M] with multiplication given by
inmi ‘ Z Ying = inyj(mi +v5)
i j i

which is well-defined by finite support of exact sequences.

Example 1.1.4. For a ring R, we have natural isomorphisms:
HOHlAlgR (R[N], A) =~ Hompgon (N, (A7 ))
~A
= Homaig,, (R[z], A).

Therefore, we conclude by the Yoneda lemma that R[N] & R[z].

1.2 Rational polyhedral cones

Definition 1.2.1. Let M be a free finitely generated Abelian group with vy, ...,vs € M. The cone generated
by the v; is

{ZT‘{UZ‘ZT}; ER>0} C M ®zR =: Mg.

We identify M with the inclusion
M— Mg :-m—m® 1.

A subset 0 C Mg is a rational polyhedron (RP) cone if 3s € N and vy,...,vs € M such that o is of this
form.
Proposition 1.2.2 (Gordon’s lemma). If o € My is an RP cone then o N M is a finitely generated monoid.

The generators of o don’t necessarily generate o N M!



1.2.1 Duality and faces
Definition 1.2.3. For any monoid we can define
M"Y = Hom(M,Z)
and
My = Hom(Mg,R)
Given a cone o C Mg we define
oV ={ne€ Mg :¥Ym € o,m-n=n(m) >0}

v 4s an RP cone.

Lemma 1.2.4. The dual cone o
(cV)V =o0.

Definition 1.2.5. We write (v1,...,v,) C Mg to be the cone generated by the v;, concretely:

(V1,...,0n) = {Zrﬂh‘ (Vi > 0} .
A face of o is a cone of the form o N (—7)" for any 7 € oV.
Lemma 1.2.6. A face of an RP cone is an RP cone.

Remark 1.2.7. There is a nice trick for computing duals of cones. Let M = Z™ and o0 C Mr = R" a cone
generated by the elements vy,...,v, € M.

We have an isomorphism Mp = My given by v + (v, —). Take any v € M, there is then a line through
the origin perpendicular to v. The dual <v>v corresponds to the half plane H, corresponding to that line in
which v lies.

Figure 1: The dual of a cone (v).

For a general cone o = (vy,...,v,) one can then compute the dual as the intersection of the half planes:
oV = n H,,.
i

The right to left inclusion is easy to see: if n € (), H,, then for all (r;) € R"

n- <Zrivi> = Zri(n-vi)

i

>0



because n € H,, son-v; > 0.

Conversely, suppose n € ¢”. Then n - v; > 0 by assumption so n € <vi)v = H,, for all i so n is also in the
intersection.

Uy

V2

Figure 2: The dual of the cone (v1,v3) is the doubly shaded region.

Definition 1.2.8. An RP cone o C My is strictly convex (SRP cone) if
cN—-o=0

or equivalently o does not contain a line through the origin.

1.2.2 Fans
Definition 1.2.9. A fan F' in My is a set of SRP cones in My satisfying the following properties:
i. {0} CF,
ii. for all o € F and faces 7 of o we have 7 € F,
iii. for all 0,0’ € F we have that o N ¢’ is a face of o.
If o is an SRP cone then the set {faces of o} is a fan.

Example 1.2.10. Let M = Z2. Then the following is a fan:

F= {<(17 O)a (07 1)> ) <170> ) <Oa 1> ) {O}} :

(0,1),

(I\~U)

Figure 3: The fan F.



Example 1.2.11. Let M = Z. Then

F={oy=(1),01=(-1),00 ={0}}

is a fan.

1.3 Toric schemes
We fix some ring R € CRing.

Definition 1.3.1. Let 0 be an SRP cone. The affine toric scheme associated to o is given by
X, = Spec(R[c¥ N MY]).
We often write S, =¥ N MV.

Remark 1.3.2. If ¢/ C ¢ then ¢¥ C (¢’) inducing a map S, — S, and therefore also a map X, — X,.
Example 1.3.3. If M = Z™ we can take
o=R% =R%x {0}"7' C Mg =R".
Then
Xo = AR xr G 3.

This is because 0¥ = R%; x R"™* s0 S, = N® x Z"~%. We know that R[N] = R[z] and R[Z] = R[z,z~ 1.
Exercise 1.3.4. The following are equivalent:

i. A cone o is strictly convex,

ii. the linear span of oV is My,

iii. the map X{oy — Spec Rlo¥ N M"] is an open immersion'.
Therefore, the affine schemes we get this way are those with a torus as a dense open subset.
Remark 1.3.5. The scheme Spec R[t,t!] is often called the torus.

Lemma 1.3.6 (Gluing schemes). Let I be an index set, X; a scheme for all i € I, for all i,j an open
Uij € X; such that Uy; = X; and @5 : Uiy =2 Uy and for all 4, j, k we have ¢;j1(Uji NUjx) = Us; N Ui and
the diagram below commutes:

Pi
Uij NU;p k U N Ukj

Uji n Ujk

Then there is a scheme X and opens U; such that p; : X; = U; and
i. X =U,U,
1. Lpi(Uij) = Ui N Uj,

1
ii. pij = 95 |vinu; © iluy;-

IWe write R[S»] because we only defined X if o is indeed strictly convex.



Lemma 1.3.7. Let o be an RP cone and (') = o N (£)" a face. Then ¢¥ C (0/)" and the map
R[S,;] = R[Ss]
is the localization at the multiplicative subset.
T={nNnM".
Proof. We prove this is the localization using the universal property:
Hompg(R[S,], A) = Hompton (Ser, (4, X))
=~ {f € Hom(S,, A) : f({) € A*}

> {f € Homg(R[S,, A]) : f(£) € A~}
=~ HomR(T_lR[SoL A)

Lemma 1.3.8. Given a fan F we can define gluing data. We let the index set be F' and define X, = X, for
alloc € F. Giwven 0,0’ € F let 1 =0 No’ then define Uyor = X, with isomorphism pyor = 1d : X; — X
Proof. We need to verify X — X, is an open immersion and the triple overlap condition.

The overlap condition boils down to verifying the following: if 7,7’ are faces of o then 7N 7' is a face of o
and XTﬂT’ - X‘rﬁ'r/ g XU"

Let o’ be a face of 0. We show that X,» — X, is an open immersion. Let ¢/ = (—£)" for some £ € M".
Then (¢/)Y = ¢ + (—{). The statement now follows from Lemma 1.3.7.

We leave the overlap condition to the reader.

Definition 1.3.9. Given a fan F' we define X to be the result of the gluing data of Lemma 1.3.8. This
can also be described as a colimit of affine schemes F' — Sch: o +— X, with the natural open immersions as
morphisms.

Remark 1.3.10. Suppose F' is a fan given by the faces of a single cone . Then Xp = X,.

Proof. In this case there is a natural inclusion 7 C ¢ for all 7 € F. Therefore, X, is a terminal object in
the cocone of schemes given by F' — Sch which is then also the colimit of the diagram by general abstract

nonsense.
Example 1.3.11. Consider the fan F' from Example 1.2.11. Then the corresponding scheme is given by
PL.
We first compute S,, for ¢ = 0,1, 2.
For g = {0} the dual cone is all of My. Therefore, S, = My N MY = M".
For 01 =
Note that we have
X,, = Spec R[Z] = Spec R[t,t7'],
X5, = Spec R[Z>o] = Spec R[t],
X,, = Spec R[Z<q] = Spec R[t'].



There is a pushout diagram of schemes:

Spec RJ[t, f;l] —— Spec R[]

| l

Spec R[t™!Y] ——— PL

which gives that the gluing gives Pk.

Lemma 1.3.12. Suppose we have a finite number of finitely generated groups (M;);<n, and SRP cones
0; € (M;)r. Then the product Hl o; C HZ M; is corresponds to the product of schemes X5, X Xq,.

Proof. We note that
v
(T1-) 11

s0 811, 0, = [1; 5o,

We also have

15 -@s.
because we have finitely many M;.

We show using Yoneda that R[], So,] = &), R[Ss,]:

HSU-; ,A) = Homnon (H S(Ti7 (A7 X))

3

- HomMon (@ Sdm (A7 X)>

= H HomMon(SU,” (A7 X ))

Homag,, (R

= H HOHlAlgR (R [Ui] ) A)

= HomAlgR <® R[O’i], A) .

This is because tensor products are coproducts in the category of commutative R-algebras. The right
adjoint functor Spec : CRing® — Sch preserves limits, so it sends the tensor product to the product of

schemes.

1.4 Toric morphisms

Now we define morphisms of toric schemes to turn the function from fans to schemes into a functor.
Definition 1.4.1. Let f : M — M’ be a morphism of monoids, 0 C Mg,0’ C My and f* the pullback map
Hom (Mg, R) — Hom(My ,R). Then if flo] C o’ we get a map of monoids S,» — S, inducing a morphism
of rings R[S,/] — R[S,] or equivalently a scheme morphism X, — X,.

Remark 1.4.2. The functor R[—] is not full so not every morphism between these rings is induced by
monoid morphisms. Consider a map Z[N] = R[z] — Z|N] = R[z] sending x> 2. This is not induced by a
monoid map N — N.



Definition 1.4.3. Let F, F’ be fans on M, M’ respectively and f : M — M’ be a monoid morphism such
that for each o € F there is a ¢/ € F’ such that f[o] C ¢’. Then f is called compatible with F and F’.

Theorem 1.4.4. Let f : M — M’ be a morphism compatible with the fans F,F’'. Then it induces a

morphism Xp — Xp/. Such a map is called a toric morphism.

Proof. First we note that for any o there is a smallest ¢’ which contains it. To see this note that FP is
directed: if 7,7/ € F’ then TN 7' € F'. Now because F is finite this process terminates eventually. We write
o’ for the smallest cone in F’ containing o € F.

Given any o € F' we know there is a map X, — X,» — Xp/. If we show that this collection of maps forms a
cocone then it induces a map Xp — X g by the universal property. To prove this, by functoriality it suffices
to show that the diagram

Sy —— Sn

I
Sg —— Sy

is a commutative diagram of monoids for any ¢ C 7 € F. This is immediate because the vertical maps are
inclusions and the horizontal map is the restriction of the pullback f* on the ambient space. !

Proposition 1.4.5. The map F — Xp extends to a functor from fans to schemes.

Proof. We define the functor on morphisms of fans using the morphisms defined in Theorem 1.4.4.

This functor preserves the identity because for any fan map F' — F' the induced map S, — S, is the identity
for all o € F because pullbacks preserve identity.

Similarly, this is multiplicative because the pullback preserves composition so the pullback given by a com-
position F' — F’ — F" is the composition of the individual pullbacks. L!)

Example 1.4.6. Let m : Z™ — Z be the projection onto the first coordinate and F' a fan with support
contained in R=% x R"~. Let F’ be the fan F’ = {{0} ,R=°}. Then 7 is compatible with the fans. We
therefore get a map

Xp — Xpr = Spec R[z] = Ag.

In particular if we take F' from Example 1.2.10 then we get a morphism of rings
R[z] — R[z,y] : © — R[z,y]

which corresponds to the natural projection A% — AlL.

Example 1.4.7. Let M = Z"™ and F a collection of cones. Then f(z) = ma is compatible with F for fixed
m € N. Any cone o € F is closed under scaling with a non-negative number so f[o] C o € F. This gives an
endomorphism Xp — Xp.

1.5 The torus action

Definition 1.5.1. Let M be a finitely generated Abelian group of rank n and F a fan on M. Writing
T = Spec R[M "] for the torus there is a map

XpXxprT — XF

locally given for each o € F' by a map R[S,] = R[S,] ®r T sending = — = ® x where we embed R[S,] C T
by the natural inclusion S, — M.



Proof. We show that this map exists. Notice that (X, xg T),cF is an open cover of the fibre product.
Therefore, if the maps are compatible on this affine cover it defines a scheme morphism.

Let 7 C o be cones in F. To show compatibility of the cone map means showing commutativity of the
following diagram:
R[S;] —— R[S,]®T

| |

R[S,] — R[S, T

This is trivial because the map into the tensor product is a natural transformation between functors and the
vertical maps are both the natural localization map. !

Theorem 1.5.2. Let M — M’ be a map of monoids such that F, F’ are compatible with it. Then the torus
action is compatible with the induced Xp — Xp/. Concretely the diagram

XFXTM *}XF/XTM/

| |

XF e 4 XF/
commutes.
Proof. 1t is sufficient the diagram commutes locally. Concretely we must have that the following commutes:

R[S,] ——— R[S./]

| |

R[S,] ® R[M] —— R[S,/] ® R[M’]

This is clearly true.

Remark 1.5.3. Given a toric scheme X over R. The toric action gives an action Xp(R) X T(R) — Xp(R)
of the torus rational points on the rational points of X which is compatible with toric morphisms.

1.6 Flat morphisms

Definition 1.6.1. Let A, B be two commutative rings and f : A — B a ring morphism. Then f is called
flat if B is a flat A-module by this map.

Example 1.6.2. The localization map R — S~'R is flat for any ring R and multiplicatively closed subset
S CR.

1.7 Proper morphisms

Definition 1.7.1. We quickly define a couple properties of morphisms. Let f : X — Y be a morphism of
schemes

i. f is called separated if the diagonal map X — X xy X is a closed immersion,

ii. f is called of finite type if for all affine opens V' C Y the inverse image f~!(V) is quasi-compact and
for all affines U C f~1(V) the map Oy (V) — Ox(U) turns Ox (U) into a finitely generated Oy (V),



iii. f is called universally closed when any pullback along Z — Y has that X Xy Z — X is a closed
embedding of topological spaces,
X XyJ7 — 7

| |

X —Y

iv. A morphism is proper if it has all three of the above properties.

Example 1.7.2. Most “natural” morphisms of schemes are separated and of finite type. However, not all
nice maps are universally closed. The standard example is the map A! — Z. Pulling back along A! — Z
gives the projection map A2 — A! which is not closed because the closed Z(zy — 1) C A? is mapped onto
the open D(z) C Al

Definition 1.7.3. We write |F| = J,cp o € Mg and call it the support of a fan.
We are going to work towards the following theorem:

Theorem 1.7.4. Let M, M’ be finitely generated Abelian groups, F,F' fans in the respective lattices and
f M — M’ a morphism compatible with the fans. Then the induced f : Xp — Xp/ of toric schemes is
proper if and only if f~Y[|F'|] = F.

Example 1.7.5. Consider the fan from Example 1.2.10 and the following fan

(0,1), (1.1)
<;0>

Figure 4: A “refinement” F’.

The identity on Z? is compatible with F/ — F. The only points of Mg mapped into |F| are those already in
|F'|. Therefore, this defines a proper map of toric schemes (later we will see this corresponds to a blow-up).

Example 1.7.6. A non-example we have already seen is sending the fan {(1)} C R to the zero fan in 0. It
corresponds to the structure map A}% — R which is not proper because —1 € 7=1[0].

Definition 1.7.7. Let K be a field. A discrete valuation is a map v : K — Z U {oo} with the following
properties:

i. v(z) = oo if and only if z = 0,
i, v(zy) = v(z) +o(y),
iii. v(z +y) > min(v(z),v(y)).
We call the ring R = {z € K : v(x) > 0} the discrete valuation ring (DVR) with valuation v : R — NU{co}.
Example 1.7.8. Let k be a field. Then the ring k[z](,) is a discrete valuation ring with valuation
o(f)=max{ieN:a'| f}.
It has fraction field k(z) the fraction field of k[z].

10



Theorem 1.7.9 (Valuative criterion of properness). Let X — Y be a quasi-separated morphism of finite
type® of Noetherian schemes® Then it is proper if and only if for all discrete valuation rings R the following
commutative square has a unique lift:

Spec K —— X

J’ HI ///7 J’

SpecR —— Y

Now we can start the proof of Theorem 1.7.4. We will prove both implications in separate lemmas.

Lemma 1.7.10. Let M, M’ be finitely generated Abelian groups, F,F' fans in the respective lattices and
f: M — M’ a morphism compatible with the fans. If the induced f : Xrp — Xp/ of toric schemes over R is
proper then f~Y[|F'|] = F.

Proof. Suppose Xy — X is proper, but there is a w € M \ |F| that has f(w) € |F'|. We want to arrive at
a contradiction: find some square such that Theorem 1.7.9 has no lift. To do this we fix some ¢’ € F’ with
flw) e

We want to find some field £ and a map R — k. This is purely to construct a DVR for the valuative criterion,
the choice does not matter. We fix a maximal ideal m < R and set k = R/m.

We construct a commutative square by giving maps Spec k(z) — Xp and Spec k[z] ;) — Xp:

Aw : Spec k(z) — Spec RIMY] C X
k(z) < RIMY]
24 iy e MY,
Af(w) : Speck[z](z) — Spec Xy € Xpr
klx](z) < Rlo¥ N MY]
VW) e gV N MY,

This gives a commutative square with lift by assumption of properness. We track in which affine open X,
the point (z) <Q[z]) lands, and obtain a commutative diagram

Aw

Speck(z) —— X,

l 3 T

Af(w)
Spec k[ib](z) — Xp
Note that w ¢ o. This means that there is some u € ¥ N MY with u(w) < 0. We obtain a commutative
triangle of rings
k(z) +—— R[oc¥ N MV]

[

k[x](a:)

but u is mapped to z*(*) € k(z) which has v(z*“(*)) = u(w) < 0 so u cannot be sent into k[z](,). This is a
contradiction so no such w can exist, proving the lemma. L!)

Now we prove the opposite implication, first over Z and extend our results using results about base changes
of proper maps. We do this to work with Noetherian schemes for which the weakened valuative criterion is
sufficient.

2All toric morphisms are separated and of finite type, so these restrictions are not relevant to us.
3There is a more general version of this for non-Noetherian schemes with all valuation rings. We need DVR’s because we
can construct maps to Z from them which live in dual spaces.
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Lemma 1.7.11. Let M, M’ be finitely generated Abelian groups, F,F' fans in the respective lattices and
f: M — M’ a morphism compatible with the fans. If f~1[|F'|] = F then the induced f : Xr — Xp of toric
schemes over Z is proper.

Proof. We show that the induced map Xrp — Xp/ is proper using the valuative criterion of Noetherian
schemes. Toric schemes over Z are Noetherian because affine toric schemes correspond to finitely generated
Z-algebras and therefore any toric scheme over Z can be covered by finitely many affine Noetherian schemes.

Let (R,v) be a DVR with fraction field K such that we have a commutative square. We want to find a lift
and show its uniqueness.

Spec K —— Xp

| s

Spec R —— Xp»

We can assume that the top map Spec K — X5 factors through the torus because X is irreducible*®

Consider any o’ € F’ be such that Spec R — XF factors through X, . Then we get a commutative square
of rings
K +—— Z[M"]

[

R« Z[o"Y N M"Y

Because MV is a group, the map MY — K takes values in the units of K. This means that we obtain a map
voao f*:0'VNM'" — Z, it factors through R where all elements have non-negative valuation: we have a
map voao f*:0V N M"Y — N. This corresponds to some point in ¢’ N M’ which we will denote vo a o f*.
It is in the image of f: it is given by f(vo«). By the assumption on f this means that there is a cone o € F
with v o @ € 0. Now we fix a particular cone o’ € F’ such that f[o] C ¢’ to obtain a commutative diagram

K+ 7Z[MV] «—— ZoV" N M|

T fT/

R+ Z[o" N M"]

Because v o« is a point in o the map voa : oV N MY — Z takes values in N and therefore gifts a lift of the
diagram. This shows the existence part of the valuative criterion.

Now we show uniqueness. If we show that Xp — Xp is separated, we get the uniqueness of such lifts for
free by the valuative criterion of separatedness. Any toric scheme over Z is separated®. We now make use
of the following properties of separated morphisms: if X — Y — Z is separated then X — Y is separated.
This gives immediately that the map is separated and thus uniqueness of the lift.

We conclude that Xp — X g satisfies the valuative criterion for properness and is therefore proper.

Now we can prove the remaining implication Theorem 1.7.4 for arbitrary rings using base change.

Corollary 1.7.12. Let M, M’ be finitely generated Abelian groups, F, F' fans in the respective lattices and
f:M — M’ a morphism compatible with the fans. If f~Y[|F’'|] = F then the induced f : Xp — X g of toric
schemes over any ring R is proper.

4The toric scheme X is irreducible because Z[MV] is a dense irreducible open.

5This is not an easy thing to see, and the proof involves some complicated scheme theory. We refer to https://mathoverflow.
net/questions/68648/valuation-criterion-of-properness-irreducible-varieties.

6This is true for a toric scheme over any ring. We will not show this but refer to any standard text e.g. Theorem 3.1.5 of
Toric Varieties by Cox, Little, and Schenck.
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Proof. Let R be any ring. We will write X for the toric scheme over Z and X for the scheme over R.

Suppose we satisfy all hypotheses, then Xp — Xp/ is a proper map. We show that X 1{3” — X 11?, is a proper
map by exhibiting it as a base change. Proper maps are preserved by base change, so the resulting map is
also proper.

We can give X is given by a pullback diagram
XE—— R
[
XF — 7

Now we can construct the morphism we are interested in as a pullback:

Xf—— x| —— R
| o
Xr X Z

This concludes the proof.

1.8 Blow-ups of toric varieties
1.8.1 Defining blow-ups

Definition 1.8.1. An irreducible divisor D in a scheme X is an irreducible closed subscheme of codimension
1 which is locally

Definition 1.8.2. Let X be a scheme and 7 a coherent sheaf. The blow-up X is a scheme with 7 : X — X
a morphism such that 7—'Z is invertible and X is terminal in the full subcategory of the slice category of
morphisms with this property.

It is concretely computed by projectivizing a graded algebra: Projp,, I".

Remark 1.8.3. Given a closed immersion ¢ : Z — X we can blow up along 2.0z to obtain a blow-up
X — X called the blow-up in Z.

1.8.2 Blowing up toric varieties

Definition 1.8.4 (Refinement). Let M be a torsion free, finitely generated, Abelian group and F, F’ two
fans. We say F’ refines F if

i. Each ¢’ € F’ is contained in a o € F,
ii. the fans have the same support: |F| = |F’|.
Refinements give proper morphisms of toric schemes Xpr — Xp.

Definition 1.8.5 (Star subdivision). Let F be a fan of M and 0 = (uy,...,u,) € F a smooth cone such that
Ul,..., Uy is a basis of M. Let up = »_,~; u; and F'(0) the set of cones generated by subsets of {ug,...,un}
not containing by {u1,...,u,}. Then

F*(oc)=F\{oc}UF (0)

is called the star subdivision of F.
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1.9 Divisors
We will only be considering Noetherian, integral, normal schemes.

Definition 1.9.1 (Prime divisor). Let X be a scheme. A prime divisor D C X is a closed, irreducible
subscheme of codimension 1. We write div X for the free Abelian group generated by the prime divisors.

Definition 1.9.2. Let D C X be a prime divisor. We will write Ox p for the stalk Ox ¢ of the generic
point n € D. It is a discrete valuation ring Ox p C K(X) with valuation vp.

Definition 1.9.3. We have a map K(X)* AY div X given by

f=> vp(f)D.
D

We define divg = imdiv to be the principal divisors and take the quotient group Cl X = div X/ divy X.

Definition 1.9.4 (Cartier divisor). Let U C X be an open. Then we have a restriction divX — divU
defined by D — DNU (extended by 0 if DNU = ).

We then define
cdiv X = {D € div X : There exists an open cover {U;}, and f; € K(X) with D|y = div f;|v, }

called the Cartier divisors.
We get an exact sequence
0 — divg X — cdiv X — Pic X.
Proposition 1.9.5. The following are true:
i. If X is smooth then Pic X 2 Cl X,
7. CIUFD =0,
1i. There is an exact sequence
0—2D —divX —-divX\ D —0.
Corollary 1.9.6. The Picard group of projective space is Z and generated by the hyperplane.

Proof. Apply excision to the hyperplane by taking quotients by principal divisors which is fine.

Definition 1.9.7. Given a toric scheme X on a lattice M we define the characters to be the morphisms
of group schemes
HomGrpsch (T, Gl)

This turns out to be equivalent to a map MY — Z: we have an isomorphism of groups
M — Homgrpsen (T, G)
m— x™"
Definition 1.9.8. We write F(1) for the set of rays in F.
Theorem 1.9.9. There is a map F(1) — div X defined on the standard opens X, by
p—=V({x": mEpLﬂSU}) c X,

giving a decomposition
Xp\T=JD,.
P
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Example 1.9.10. Given the affine space A2 given as a toric scheme by o = N2 C Z? the rays are the two
axes.

The complement A? \ G? is exactly given by the two axes of A2 which is the union of the desired divisors.
Remark 1.9.11. We can see Y™ : T — G defines a function y™ € K (X)* which makes div x" well-defined.

Proposition 1.9.12. There is an equality

div x™ = Z (up,my D,
P

where u, is the minimal generator of p.

Proof. The function x™ cannot have poles or roots on 1" because it maps into G.

We apply excision to get an exact

0= EPzD, - divXp — divl — 0
P

by excision. Because x™ is zero on T this means that it is a sum of elements in € o 7.D,,.

By coordinate transformation we can assume u, = e; € M. We identify the character with a monomial
Xm ~ a:<m’“/’1> .. $<myupn>

from which we get the desired statement.

Theorem 1.9.13. There is an exact sequence

M PR (NZD, - CLXp — 0.

1.10 Chow groups and intersection theory

Example 1.10.1. Let X be a real differential manifold of dimension n and an integer k > 0. Then we have
cohomology groups Hy(X;Z) and a cup product

Hn,k(X;Z) X Hn,l<X;Z) — Hn,k,l(X;Z)

corresponding to taking the “intersection” of submanifolds.

We try to generalize this to schemes where we will get an isomorphism
Ak(X) = Hgk(X; Z)
where on the right-hand side we give X/C the analytic topology.

Definition 1.10.2 (Chow group). Take X a scheme of finite type and k& > 0. We define

Zp(X) = {Z w;[v;] s u; € Z,v; is a closed subvariety of dimension k} )

For every k + 1-dimensional subvariety w of X, f € x(w) we define

div, f =Y _ordery(9)[V] € Zi(X).
\4
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We define By (X) C Z;(X) to be the subgroup generated by all cycles of the form div,, f. The Chow group
is then defined as
Ap(X) = Zy(X)/Br(X).

We also define

Z.(X) = P zn(X),
k

A (X) = P A(X).
k

Definition 1.10.3. Let 2: Y — X be a closed subscheme. Then we define

1 Ap(Y) = Ap(X)
[Z] = [Z].

Lemma 1.10.4. Given Y C X a closed subscheme and U =Y \ X we get an exact sequence

Proposition 1.10.5. The Chow groups of A™ are given by

Z k=n,

0 otherwise.

Ap(A™) = {

Similarly, for projective space we have

A (P") 2 Z
for0<k<n.
Remark 1.10.6. We have an intersection pairing on P"

An,k(Pn) X An,l(]Pm) — An,k,l(]Pm)

(a,b) € Z? > ab € Z.
If codim(X NY) = codim X + codimY then [X NY] = [X] - [Y]. We might have to choose representatives
such that they intersect transversally for this to be well-defined.
Definition 1.10.7. Let f : X — Y be a proper morphism and Z C X a subvariety. Then f(Z) CY is a

subvariety of dimension at most dim Z giving a pushforward

(5(2) : R(F(Z2))) - [£(2)] dim f(Z) = dimZ

0 else.

f([2]) = {

1.10.1 Chow groups on toric varieties

Remark 1.10.8. On a toric variety we always have that

Ap—q1 =div(X)/s(X)* =ClX

Theorem 1.10.9. Let X be a toric variety of a fan F. Then Ap(X) is generated by the orbit closures v(o)
of the cones o of dimension n —k of F.
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Proof. We define X; = Umdimaz”% v(o) giving inclusions X; O X;_1. Then X; \ X;_; is exactly the orbits

of cones of dimension n — 7 written as UU dimoen—1 Oo-
: -

This gives an exact sequence

Ap(Xia) = A(X) = P A(0,) = 0.

dimo=n—1
Now the O, are the tori Ty, which are opens in A?. Therefore, excision gives

Z k=1

0 else.

Ap(T) = {

We have an exact sequence
Ak(Xifl) — Ak(XZ> — @ Z[OJ] — 0.
dimo=n—1

By induction, we may assume that

0 k>

Ap(X;) =
k( ) {@dim o=n—1 Z[OU] else7

for k < 1.

1.11 Blowing up in a monomial ideal

All toric varieties that occur in this talk are over some field k.

1.11.1 Blowing up a ring

We first inspect what blow-ups of affine schemes look like. We do this by first considering ideals that are
already invertible.

Lemma 1.11.1. Let R be a ring, f € R regular and I = (f) generated” by ri,...,7,. Then there are
fi,..., fn such that r; generates Iy, <Ry, and (f1,..., fn) = R.

Proof. Let f € R be a generator of I. Then for each i there is an f; € R such that r; = f; f. We claim these
have the desired property. Clearly (f) = (r;) in Ry, because f; 'r; = f in Ry,. Therefore, all we need to do
is show that (f1,...,fn) = R.

Now suppose that (f1,..., fn) # R, then there is a maximal ideal m < R such that (f1,..., fn)m — Rm is
not surjective. This means that f1,..., f, € m, else one of them would have been a unit which generates
R... Therefore, we must have that

(f)=C(r1,..mn) © (1, fa)(f) Sm(f) € ()

giving m(f) = (f) in the local ring Ry,. Nakayama’s lemma then gives (f) = 0. Because f was regular this
gives a contradiction. L!J

This shows that for a set of generators rq,...,r, of a nice enough invertible ideal, we can find an affine open
cover such that one of these elements generates the ideal on each open. We emulate this property to get a
definition of the blow-up of an affine scheme:

"This is obviously not the smallest set of generators.
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Definition 1.11.2 (Blow-up). Let R be a ring and I = (rq,...,7r,) < R an ideal. We can construct the
blow-up of Spec R in I to be the scheme constructed in the following manner:

For each r; construct the ring
R, — R[ﬂﬂj]#i) _R [m} .

(rj —ar; T

Then clearly (r1,...,7,) = (r;) in R;. These rings will cover the blow-up. We glue R; and R; along the

localization
P
Rij =R {Jv z] = (Ri)e; = (Rj)a;-

Ti Tj

This defines a scheme which is the blow-up Bl; R in the ideal I. We also get the blow-up map Bl; R — Spec R
from the natural inclusion maps R — R;.

The toric varieties we consider are normal, but blow-ups are not. Therefore, we will consider the normalized
blow-up.
1.11.2 Normalization

Definition 1.11.3 (Integral elements and integral closure). Let R be an integral domain with fraction field
K. We call an element a € K integral over R if there exists some monic polynomial f € R[x] such that

f(a) =0.

A domain is integrally closed if it contains all elements which are integral over it.

Lemma 1.11.4. The integral closure has a few nice properties. We will give a few
i. Given any domain, there is a smallest integrally closed ring containing it:

A.
R C A C K integrally closed

It is called the integral closure.
ii. Given integrally closed rings (R;); with fraction field K, the intersection (); R; is also integrally closed.
115. For any domain R the following are equivalent:
(a) R is integrally closed,
(b) Ry is integrally closed for all prime ideals p< R,
(¢) R is integrally closed for all maximal ideals m < R.
w. Localizations of integrally closed rings are integrally closed.

v. Let R C R’ be two domains such that Q(R) = Q(R') = K and R’ is integrally closed. If the integral
closure of R contains R’ then it is R'.

Definition 1.11.5. A scheme X is normal if all of its stalks Ox , are integrally closed domains.

Theorem 1.11.6. Given a scheme X there is a scheme normal scheme X and morphism XV — X such
that locally this morphism is given by inclusion into the integral closure.

Theorem 1.11.7. Toric varieties over a field are normal.

Proof. We show that any toric varieties has a cover of integral domains.

First we prove that the toric variety of a ray is normal. Let p be a ray in M ® R. Without loss of generality
we may assume that it is the positive part of the first axis. Then X, = k[;vl,inl7 ...,z which is the
localization of an integrally closed domain and hence integrally closed.
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Now any cone o is generated by its rays pi, ..., pn. This means that o¥ = (), py/, so also k[S,| =, k[S,,]
which is the intersection of integrally closed domains and therefore integrally closed. This gives that the
standard affine opens are normal. !

1.11.3 Computing blow-ups of toric varieties

Now we are ready for describing the process of computing normalized blow-ups of affine toric varieties in
monomial ideals. We will only give the process for blowing up a monomial ideal of A% generated by two
monomials.

Let (XY X%Y?2) he a monomial ideal of k[z,y]. We can identify this ideal with points of Z? as in
Figure 5. We also pick the monomials to the right and above the points because these are also in the
ideal.

(0,1),

({,0)

Figure 5: Drawing the ideal.

Next we take the convex hull of this shape

(0,1),

Figure 6: Drawing the convex hull of the ideal.

We translate all corners to the origin and look at the cones they generate.
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(ar — a, by — bk}

0,0}

(a2 = ay, by + aryy

(a) The first translation o". (b) The second translation o’”.

Figure 7: Shifting both corners of the convex hull to the origin.

Taking the dual cones of these we get a fan, which is the normalized blow-up:

Figure 8: The fan of the normalized blow-up.

Lemma 1.11.8. Let 0 C M be a cone with rays p1,...,pn and x1,...,x, points on pi,...,pn respectively.
Then writing ((x;);)y for the monoid generated by these points, the ring k[o N M] is integral over k[{(;))y]-

Proof. Take any point z € o N M. We show it is integral over A. Because it is in the cone it is a Q>¢-linear
combination of the x;:

Therefore, >, p; [ 1,4, @i € ((2:)i)y- This element is a scalar multiple of z: dividing by []; ¢; gives 2.
This shows that z is a root of the monic polynomial

Hlia _ H 2P 2 U
and therefore integral.
Remark 1.11.9. Note that if k[oc N M| and k[{(z;)n)] do not necessarily have the same fraction field, so the
former is not necessarily the integral closure of the latter.
Take for example the ring inclusion k[z?] C k[z]. Both are integrally closed but k[z] is integral over k[z?].

Theorem 1.11.10. The fan in Figure 8 is the normalized blow-up of A% in the ideal (XY, X%2Yb2),
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Proof. We show that the standard affine opens of this toric variety are isomorphic to those of the normal-
ization of Definition 1.11.2 and that we glue along the same open.

The affine opens of the blow-up are the spectra of the affine rings

Xalel a;—a —
: |:X’Y7 Xa2Yb2:| - k[X’}/’X eyt bQ]a
Xa2ybe _ B
k{XYXYb] = k[X, Y, X®2mayth],

We claim that normalizing gives us exactly the desired rings corresponding to the cones, glued along the
same opens.

We prove the statement for the cone o. The other argument will work exactly the same. The ring
k[X,Y, X®1—a2y?1=b2] is given by the monoid ring of the monoid drawn in Figure 9.

(az —ar,by tar)
2(az —aj. by —al).
3(ah —abe —ar),

Aaz — a1, by~ a1)

Figure 9: The monoid corresponding to the affine of the blow-up.

We claim that the normalization of this ring is exactly the desired cone: We need to show that all points of
the cone correspond to monomials that are integral over this ring and that they have the same fraction field.

The first part is immediate from Lemma 1.11.8. At least one point of each ray is in the cone. Therefore, the
ring k[S,] is integral over the above ring.

To see the fraction fields are the same we simply note that both have fraction field k(X,Y).
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