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Jonas van der Schaaf

First it’s probably good to give some concrete examples of prime ideals as I didn’t show any.

Example 1. Consider the ring Z and the ideal (2) = {2x : x ∈ Z} we discussed last week. Then (2) is a
prime ideal so Z/2Z is a domain. We prove (2) is a prime ideal:

Suppose ab ∈ (2): this means that ab = 2x for some x ∈ Z so 2 divides ab. Because 2 is a prime number this
means that 2 divides either a or b (or both). Therefore, a ∈ (2) or b ∈ (2) proving that (2) is a prime ideal.

This proof works more generally: for any prime number p the ideal (p) is a prime ideal. This is where the
name “prime” comes from.

The following is also something we’ll need:

Lemma 1. For any ring morphism f : R → S the kernel ker f = {x ∈ R : f (x) = 0} is an ideal.

Proof. The kernel is the kernel of f seen as an additive morphism, so it is definitely a subgroup. We show
that ax ∈ ker f for all a ∈ R and x ∈ ker f :

f (ax) = f (a) f (x)
= f (a)0
= 0.

1 Evaluation maps

Proposition 1. Let k be a field and write k[x] for the polynomial ring. Then any r ∈ k gives a ring morphism
fr : k[x] → k determined by φr(x) = r.

Proof. If φr(x) = r is true, then by the axioms of ring morphisms for any polynomial ∑n
i=0 aixi we must

have

φr

(
∑

i
aixi

)
= ∑

i
φr(ai)φr(x)i

= ∑
i

φr(ai)ri.

We can define that a ∈ k we have φr(a) = a, i.e. φr does nothing on k itself. Then we get

φr

(
∑

i
aixi

)
= ∑

i
airi = f (r)

for any polynomial. The map φr just fills in x = r in any polynomial. We show that this defines a ring
morphism.

Because φr does nothing with k and the 0, 1 or k[x] are the 0, 1 from k this means that these are preserved.
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Now we show this map is additive: take f = ∑i aixi and g = ∑j bjxj two polynomials. Then their sum is
defined as ∑k(ak + bk)xk. We apply the evaluation morphism to get

φr( f + g) = φr

(
∑
k
(ak + bk)xk

)
= ∑

k
(ak + bk)φr(x)k

= ∑
k

akrk + ∑
k

bkrk

= φr( f ) + φr(g).

You can do a similar proof for multiplicativity.

Therefore, this is a ring morphism.

We will look at the ideals of polynomial rings over fields. In order to do this we’re going to need a propo-
sition which I will not prove.

Proposition 2. If k is a field, then all ideals I ⊆ k[x] are of the form ( f ) for some f ∈ k[x]. You can find such an f
by taking the polynomial of lowest degree contained in I.

Now we can look at the kernel of the evaluation map.

Proposition 3. If r ∈ k then the kernel of the evaluation morphism φr : k[x] → k is exactly the ideal (x − r) ⊆ k[x].

Proof. We have that φr(x − r) = r − r = 0. Therefore, the polynomial x − r is contained in the kernel ker φr.
This means that (x − r) ⊆ ker φr.

Now by the previous unproven proposition there is some f ∈ k[x] such that ( f ) = ker φr and f is the
element of lowest degree in ker f . If f ̸= x − r then it must have degree lower than 1, so it has degree 0.
This means it is a constant a0 ∈ k× = k \ {0}. Then a−1

0 a = 1 ∈ ker f so φr(1) = 0. This is impossible as
φr(a) = a for all a ∈ k and a field cannot have 1 = 0.

From this we conclude that (x − r) = ker φr.

One can prove that k[x]/(x − r) = k[x]/ ker φr is naturally isomorphic to k with the natural isomorphism
given by f 7→ φr( f ). In this quotient we have essentially set x − r = 0 so now x has all the algebraic
properties of r. We will now look at what happens when we try to create elements with more complex
algebraic properties.

2 Evaluating in elements not in the ring

The idea of creating field extensions is that x ∈ k[x] is a “generic” element in some sense: there are no
algebraic relations it has to anything in k. We can give it some relation to k by taking the quotient by an
ideal: (x − r) essentially said that x has exactly the same properties as r: they are equal in the quotient field.
Now we look at what happens if we divide by more complex polynomials.

Example 2. We define the ring
Q(

√
2) =

{
a + b

√
2 : a, b ∈ Q

}
.

We define addition and multiplication by setting
√

2
2
= 2 and expanding expressions using distributivity.

This is not only a ring but also a field with inverses (a + b
√

2)−1 = 1
a2−2b2 (a − b

√
2).

This ring is not isomorphic to Q:
√

2 is irrational and therefore not an element of the fractions. We try to
construct this ring using quotients of polynomials.
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To do this we construct some ring containing Q and an element with the algebraic properties of
√

2. The

“defining” property of
√

2 is of course that
√

2
2
= 2. We try to emulate this by considering the quotient

k[x]/(x2 − 2). Here the coset x has the property that x2 = 2 and this will take on the role of
√

2. It turns out
that this quotient ring is exactly the same one as above: the two are isomorphic and there is an isomorphism
sending x to

√
2. The isomorphism k[x]/(x2 − 2) → Q(

√
2) is given by the map f 7→ f (

√
2). You can see

this as a natural extension of the evaluation maps we saw earlier.

Notice that Q is still contained in Q(
√

2). All elements a + b
√

2 with b = 0 are just elements of Q.

One can add multiple new “algebraic” elements to a field repeatedly to get larger and larger fields, leading
us naturally to the definition of a field extension:

Definition 1. Let k be a field and k′ ⊆ k a subring that is also a field. Then we call k a field extension of k′.

Example 3. In the previous example we saw that Q is a subfield of Q(
√

2) and therefore Q(
√

2) is a field
extension of Q.

Example 4. You could add 3
√

3 to Q(
√

2) by taking the quotient Q(
√

2)[y]/(y3 − 3). This is a field extension
of both Q and Q(

√
2).
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