Ideals and polynomial rings
Jonas van der Schaaf

First it’s probably good to give some concrete examples of prime ideals as I didn’t show any.

Example 1. Consider the ring Z and the ideal (2) = {2x : x € Z} we discussed last week. Then (2) is a
prime ideal so Z /27 is a domain. We prove (2) is a prime ideal:

Suppose ab € (2): this means that ab = 2x for some x € Z so 2 divides ab. Because 2 is a prime number this
means that 2 divides either a or b (or both). Therefore, a € (2) or b € (2) proving that (2) is a prime ideal.

This proof works more generally: for any prime number p the ideal (p) is a prime ideal. This is where the
name “prime” comes from.

The following is also something we’ll need:

Lemma 1. For any ring morphism f : R — S the kernel ker f = {x € R : f(x) = 0} is an ideal.

Proof. The kernel is the kernel of f seen as an additive morphism, so it is definitely a subgroup. We show
that ax € ker f foralla € R and x € ker f:

1 Evaluation maps

Proposition 1. Let k be a field and write k[x] for the polynomial ring. Then any r € k gives a ring morphism
fr  k[x] — k determined by ¢,(x) = 7.

Proof. If ¢,(x) = r is true, then by the axioms of ring morphisms for any polynomial Y, a;x’ we must
have

@r (Zam’) = ZfPr(ai)(Pr(x)i
= Z?r(ai)ri'

We can define that a € k we have ¢,(a) = a, i.e. ¢, does nothing on k itself. Then we get

Pr (Zaixl) = Zairi = f(r)

for any polynomial. The map ¢; just fills in x = r in any polynomial. We show that this defines a ring
morphism.

Because ¢, does nothing with k and the 0,1 or k[x] are the 0, 1 from k this means that these are preserved.



Now we show this map is additive: take f = Y a;x' and g = Y bjxj two polynomials. Then their sum is
defined as Y (a; + by)x*. We apply the evaluation morphism to get

er(f+8) = or (Z(”k + bk)xk>

k

= Z(ak + bi) r(x)
k
= Zakrk + Zbkrk
k k
= ¢r(f) +¢r(8)
You can do a similar proof for multiplicativity.
Therefore, this is a ring morphism. O

We will look at the ideals of polynomial rings over fields. In order to do this we’re going to need a propo-
sition which I will not prove.

Proposition 2. If k is a field, then all ideals I C k[x] are of the form (f) for some f € k[x|. You can find such an f
by taking the polynomial of lowest degree contained in 1.

Now we can look at the kernel of the evaluation map.

Proposition 3. If r € k then the kernel of the evaluation morphism ¢, : k[x] — k is exactly the ideal (x —r) C k[x].

Proof. We have that ¢,(x —r) = r —r = 0. Therefore, the polynomial x — r is contained in the kernel ker ¢;.
This means that (x —r) C ker ¢,.

Now by the previous unproven proposition there is some f € k[x] such that (f) = ker¢, and f is the
element of lowest degree in ker f. If f # x — r then it must have degree lower than 1, so it has degree 0.
This means it is a constant ag € k* = k\ {0}. Then ay'a = 1 € ker f so ¢,(1) = 0. This is impossible as
¢r(a) = aforalla € k and a field cannot have 1 = 0.

From this we conclude that (x — r) = ker ¢;. O

One can prove that k[x]/(x —r) = k[x]/ ker ¢, is naturally isomorphic to k with the natural isomorphism
given by f — ¢,(f). In this quotient we have essentially set x — r = 0 so now x has all the algebraic
properties of . We will now look at what happens when we try to create elements with more complex
algebraic properties.

2 Evaluating in elements not in the ring

The idea of creating field extensions is that x € k[x] is a “generic” element in some sense: there are no
algebraic relations it has to anything in k. We can give it some relation to k by taking the quotient by an
ideal: (x — r) essentially said that x has exactly the same properties as r: they are equal in the quotient field.
Now we look at what happens if we divide by more complex polynomials.

Example 2. We define the ring

Q(\fz):{a+b\fzza,beQ}.

We define addition and multiplication by setting ﬁz = 2 and expanding expressions using distributivity.
This is not only a ring but also a field with inverses (a + by/2) ™! = ﬁ (a —bV2).

This ring is not isomorphic to Q: v/2 is irrational and therefore not an element of the fractions. We try to
construct this ring using quotients of polynomials.



To do this we construct some ring containing Q and an element with the algebraic properties of v/2. The

“defining” property of /2 is of course that ﬁZ = 2. We try to emulate this by considering the quotient
k[x]/ (x* — 2). Here the coset ¥ has the property that ¥* = 2 and this will take on the role of v/2. It turns out
that this quotient ring is exactly the same one as above: the two are isomorphic and there is an isomorphism
sending ¥ to v/2. The isomorphism k[x]/(x*> —2) — Q(+/2) is given by the map f ++ f(1/2). You can see
this as a natural extension of the evaluation maps we saw earlier.

Notice that Q is still contained in Q(ﬁ) All elements a + byv/2 with b = 0 are just elements of Q.

One can add multiple new “algebraic” elements to a field repeatedly to get larger and larger fields, leading
us naturally to the definition of a field extension:

Definition 1. Let k be a field and k' C k a subring that is also a field. Then we call k a field extension of k’.

Example 3. In the previous example we saw that Q is a subfield of Q(v/2) and therefore Q(v/2) is a field
extension of Q.

Example 4. You could add /3 to Q(v/2) by taking the quotient Q(v/2)[y]/ (y® — 3). This is a field extension
of both Q and Q(v/2).
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